Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cancer Research Conference: American Association for Cancer Research Annual Meeting, ACCR ; 83(7 Supplement), 2023.
Article in English | EMBASE | ID: covidwho-20234125

ABSTRACT

Breast cancer is the most common form of cancer and the second cancer-causing death in females. Although remission rates are high if detected early, survival rates drop substantially when breast cancer becomes metastatic. The most common sites of metastatic breast cancer are bone, liver and lung. Respiratory viral infections inflict illnesses on countless people. The latest pandemic caused by the respiratory virus, SARS-CoV-2, has infected more than 600 million worldwide, with documented COVID-related death upward of 1 million in the United States alone. Respiratory viral infections result in increased inflammation with immune cell influx and expansion to facilitate viral clearance. Prior studies have shown that inflammation, including through neutrophils, can contribute to dormant cancer cells reawakening and outgrowth. Moreover, inhibition of IL6 has been shown to decrease breast cancer lung metastasis in mouse models. However, how respiratory viral infections contribute to breast cancer lung metastasis remains to be unraveled. Using MMTV/PyMT and MMTV/NEU mouse models of breast cancer lung metastasis and influenza A virus as a model respiratory virus, we demonstrated that acute influenza infection and the accompanying inflammation and immune cell influx awakens and dramatically increased proliferation and expansion of dormant disseminated cancer cells (DCC) in the lungs. Acute influenza infection leads to immune influx and expansion, including neutrophils and macrophages, with increased proportion of MHCII+ macrophages in early time points, and a sustained decrease in CD206+ macrophages starting 6 days post-infection until 28 days after the initial infection. Additionally, we observed a sustained accumulation of CD4+ T cells around expanding tumor cells for as long as 28 days after the infection. Notably, neutrophil depletion or IL6 knockout reversed the flu-induced dormant cell expansion in the lung. Finally, awakened DCC exhibited downregulation of vimentin immunoreactivity, suggesting a role for phenotypic plasticity in DCC outgrowth following viral infection. In conclusion, we show that respiratory viral infections awaken and increase proliferation of dormant breast cancer cells in the lung, and that depletion of neutrophils or blocking IL6 reverses influenza-induced dormant cell awakening and proliferation.

2.
Coronaviruses ; 2(11) (no pagination), 2021.
Article in English | EMBASE | ID: covidwho-2255067

ABSTRACT

Older adults are at a higher risk of developing serious illness and mortality from COVID-19. Among a multitude of factors, cellular senescence associated with ageing, obesity, cardiovascular diseases, and diabetes seems to be statistically correlated with severe SARS-CoV-2 infections and mortality. Surface proteins such as vimentin and CD26 that are differentially ex-pressed on senescent cells seem important for SARS-CoV-2 attachment and internalization. Potential therapeutic agents against this novel virus also exhibit senolytic and anti-inflammatory actions, implicating that their beneficial effects could, in part, be attributed to their senescent cell removal and the associated inflammatory phenotype neutralizing properties. Elucidating the underlying molecular mechanisms that connect cellular senescence and severity of SARS-CoV-2 infection might help direct towards development of effective therapeutics for elderly patients of COVID-19.Copyright © 2021 Bentham Science Publishers.

3.
International Journal of Rheumatic Diseases Conference: 24th Asia Pacific League of Associations for Rheumatology Congress, APLAR ; 26(Supplement 1), 2022.
Article in English | EMBASE | ID: covidwho-2227557

ABSTRACT

The proceedings contain 539 papers. The topics discussed include: advances in the understanding and management of atherosclerosis in inflammatory arthritis;long-term safety and efficacy of voclosporin in Asian patients with lupus nephritis;clinical profile of four children with juvenile dermatomyositis and anti-SAE antibody positivity: a single center experience from north India;the MMP degraded and citrullinated vimentin (VICM) is a diagnostic and treatment response biomarker;incidence and outcome of covid-19 in AIRD patients on concomitant treatment with tofacitinib- results from KRA covid cohort (KRACC) subset;are we treating-to-target in spondyloarthritis (SPA)? a cross-sectional analysis from the Asia Pacific league of associations for rheumatology (APLAR) SPA registry;utilities of low-dose computed tomography (LDCT) on identifying patient with axial psoriatic arthritis (AXPSA) a cross-sectional study;age-related genes USP2 and ARG2 are involved in the reduction of immune cell infiltration in elderly patients with rheumatoid arthritis;and MICRORNA-27a-3p inhibits lung and skin fibrosis of systemic sclerosis by negatively regulating SPP1.

4.
Thromb Res ; 221: 97-104, 2023 01.
Article in English | MEDLINE | ID: covidwho-2150682

ABSTRACT

INTRODUCTION: Thrombosis is frequently manifested in critically ill patients with systemic inflammation, including sepsis and COVID-19. The coagulopathy in systemic inflammation is often associated with increased levels of fibrinogen and D-dimer. Because elevated levels of vimentin have been detected in sepsis, we sought to investigate the relationship between vimentin and the increased fibrin formation potential observed in these patients. MATERIALS AND METHODS: This hypothesis was examined by using recombinant human vimentin, anti-vimentin antibodies, plasma derived from healthy and critically ill patients, confocal microscopy, co-immunoprecipitation assays, and size exclusion chromatography. RESULTS: The level of vimentin in plasma derived from critically ill subjects with systemic inflammation was on average two-fold higher than that of healthy volunteers. We determined that vimentin directly interacts with fibrinogen and enhances fibrin formation. Anti-vimentin antibody effectively blocked fibrin formation ex vivo and caused changes in the fibrin structure in plasma. Additionally, confocal imaging demonstrated plasma vimentin enmeshed in the fibrin fibrils. Size exclusion chromatography column and co-immunoprecipitation assays demonstrated a direct interaction between extracellular vimentin and fibrinogen in plasma from critically ill patients but not in healthy plasma. CONCLUSIONS: The results describe that extracellular vimentin engages fibrinogen in fibrin formation. In addition, the data suggest that elevated levels of an apparent aberrant extracellular vimentin potentiate fibrin clot formation in critically ill patients with systemic inflammation; consistent with the notion that plasma vimentin contributes to the pathogenesis of thrombosis.


Subject(s)
COVID-19 , Hemostatics , Thrombosis , Humans , COVID-19/complications , Critical Illness , Fibrin , Fibrinogen/chemistry , Inflammation/complications , Thrombosis/etiology , Vimentin/metabolism , Extracellular Space/metabolism
5.
Front Immunol ; 13: 987453, 2022.
Article in English | MEDLINE | ID: covidwho-2039679

ABSTRACT

The innate immune response to viruses is critical for the correct establishment of protective adaptive immunity. Amongst the many pathways involved, the NLRP3 [nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3)] inflammasome has received considerable attention, particularly in the context of immunity and pathogenesis during infection with influenza A (IAV) and SARS-CoV-2, the causative agent of COVID-19. Activation of the NLRP3 inflammasome results in the secretion of the proinflammatory cytokines IL-1ß and IL-18, commonly coupled with pyroptotic cell death. While this mechanism is protective and key to host defense, aberrant NLRP3 inflammasome activation causes a hyperinflammatory response and excessive release of cytokines, both locally and systemically. Here, we discuss key molecules in the NLRP3 pathway that have also been shown to have significant roles in innate and adaptive immunity to viruses, including DEAD box helicase X-linked (DDX3X), vimentin and macrophage migration inhibitory factor (MIF). We also discuss the clinical opportunities to suppress NLRP3-mediated inflammation and reduce disease severity.


Subject(s)
COVID-19 , Macrophage Migration-Inhibitory Factors , Carrier Proteins/metabolism , DEAD-box RNA Helicases/metabolism , Humans , Inflammasomes/metabolism , Interleukin-18/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Nucleotides/metabolism , SARS-CoV-2 , Vimentin/metabolism
6.
J Clin Med ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1953592

ABSTRACT

Humanized Virus Suppressing Factor-variant 13 (hzVSF-v13), a monoclonal IgG4 antibody against vimentin, was investigated in moderate to severe COVID-19 pneumonia through a Phase II study. Patients were randomized to two different IV doses of the test drug or saline with standard of care. Overall, 64 patients were recruited, and 62 entered the efficacy assessment in the full analysis set. Primary endpoint: The clinical failure rate at day 28 was 15.8% for placebo, 9.1% for low-dose hzVSF-v13 and 9.5% for high-dose hzVSF-v13 (not significant). A trend toward better efficacy was shown in several secondary endpoints, with statistical significance between low-dose hzVSF-v13 and placebo in terms of the rate of improved patients on the ordinal scale for clinical improvement (OSCI): 90.0% vs. 52.63% (p = 0.0116). In the severe stratum, the results of low-dose hzVSF-v13 vs. placebo were 90.0% and 22.2% for OSCI (p = 0.0092), 9 days and 14 days for time to discontinuation of oxygen therapy (p = 0.0308), 10 days and 15 days for both time to clinical improvement (TTCI) and time to recovery (TTR) and p = 0.0446 for both TTCI and TTR. Change from baseline of NEWS2 score at day 28 was -3.4 vs. + 0.4 (p = 0.0441). The results propose hzVSF-v13 as a candidate in the treatment of severe COVID-19.

7.
Clinical Cancer Research ; 27(6 SUPPL 1), 2021.
Article in English | EMBASE | ID: covidwho-1816903

ABSTRACT

Vimentin intermediate filament is involved in multiple steps of viral infection such as viral entry, trafficking and egress, as well as in various mechanisms of hyperinflammation such as the restraint of Treg cell functions and the activation of NLRP3 inflammasome. We evaluated a vimentin-binding small molecule compound ALD-R491 for its effects on cellular processes related to viral infection and for its efficacy in treating SARS-CoV2 infection in vitro and in vivo. In cultured cells, the compound could reduce endocytosis by 10%, endosomal trafficking by 40% and exosomal release by over 30%. In an infection system consisting of a lentiviral pseudotype bearing the SARS-CoV-2 spike protein and HEK293 cells over-expressing the human ACE2 receptor with multiplicity of infection (MOI) of 1, 10 and 100, the compound inhibited the infection up to a maximum of over 90%, with IC 50 < 50 nM, CC50 > 10 μM, and SI > 200. After oral administration of ALD-R491 in rats, the plasma concentration of the compound reached the peak (Tmax) at around 5 h with a half-life (T1/2) of about 5 h. The compound was widely distributed and enriched in tissues in vivo in rats with a volume of distribution (Vd) of over 2,000 ml/kg. The lung and the lymph nodes were among the tissues with high drug exposures. In rats receiving oral gavage of the compound at 30 mg/kg, the drug exposure in the lung and the lymph nodes maintained at levels over 1 μM from 1 h to 6 h after the oral dosing. In the syngeneic mouse tumor CT26 model, ALD-R491 was found to activate regulatory T cells (Tregs) in vivo and enhance de novo generation of Tregs in lymph nodes of the mice. In the Mouse-Adapted SARS-CoV2 model, aged mice (11-12 months) were used to provide a harder test of recovery from infection that reflects the severeness of COVID-19 in old patients. For therapeutic treatment, the mice were orally administered with the compound 24 h after the SARS-CoV2 infection once per day on Day 1, Day 2 and Day 4. At 10 mg/kg, ALD-R491 significantly reduced the body weight loss of the mice (p<0.01 on Day 5 post-infection). At both 3 mg/kg and 10 mg/kg, the compound significantly reduced the hemorrhagic score for the lungs (p<0.01 and p<0.05, respectively, on Day 5). These results indicate that vimentin intermediate filament is an effective host-directed antiviral target. Importantly, the vimentin-binding small molecule ALD-R491 impacts multiple aspects of SARS-CoV2 infection, has a favorable oral pharmacokinetics and a wide therapeutic window, and therefore may be a promising therapeutic candidate for treating COVID-19. Statement: Aluda Pharmaceuticals, Inc. has utilized the non-clinical and pre-clinical services program offered by the National Institute of Allergy and Infectious Diseases.

8.
The Lancet Infectious Diseases ; 22(3):323, 2022.
Article in English | ProQuest Central | ID: covidwho-1709775

ABSTRACT

Vimentin in SARS-CoV-2 entry Extracellular vimentin, a structural protein widely expressed in endothelial cells in the vascular system, enables SARS-CoV-2 entry into human cells say researchers who found that knockdown of vimentin significantly reduced SARS-CoV-2 infection of human endothelial cells, whereas overexpression of vimentin with ACE2, the entry receptor for SARS-CoV-2, significantly increased the infection rate. According to the study's lead author, the situation has changed little for children in Africa since the study was done. The study's researchers allowed no-CTL4 and intact-CTL4 mosquitoes to feed on human blood samples laced with Plasmodium falciparum parasites.

9.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Article in English | MEDLINE | ID: covidwho-1655773

ABSTRACT

SARS-CoV-2 entry into host cells is a crucial step for virus tropism, transmission, and pathogenesis. Angiotensin-converting enzyme 2 (ACE2) has been identified as the primary entry receptor for SARS-CoV-2; however, the possible involvement of other cellular components in the viral entry has not yet been fully elucidated. Here we describe the identification of vimentin (VIM), an intermediate filament protein widely expressed in cells of mesenchymal origin, as an important attachment factor for SARS-CoV-2 on human endothelial cells. Using liquid chromatography-tandem mass spectrometry, we identified VIM as a protein that binds to the SARS-CoV-2 spike (S) protein. We showed that the S-protein receptor binding domain (RBD) is sufficient for S-protein interaction with VIM. Further analysis revealed that extracellular VIM binds to SARS-CoV-2 S-protein and facilitates SARS-CoV-2 infection, as determined by entry assays performed with pseudotyped viruses expressing S and with infectious SARS-CoV-2. Coexpression of VIM with ACE2 increased SARS-CoV-2 entry in HEK-293 cells, and shRNA-mediated knockdown of VIM significantly reduced SARS-CoV-2 infection of human endothelial cells. Moreover, incubation of A549 cells expressing ACE2 with purified VIM increased pseudotyped SARS-CoV-2-S entry. CR3022 antibody, which recognizes a distinct epitope on SARS-CoV-2-S-RBD without interfering with the binding of the spike with ACE2, inhibited the binding of VIM with CoV-2 S-RBD, and neutralized viral entry in human endothelial cells, suggesting a key role for VIM in SARS-CoV-2 infection of endothelial cells. This work provides insight into the pathogenesis of COVID-19 linked to the vascular system, with implications for the development of therapeutics and vaccines.


Subject(s)
Endothelial Cells/virology , Extracellular Space/metabolism , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Virus Internalization , A549 Cells , Angiotensin-Converting Enzyme 2/metabolism , Coculture Techniques , Endothelium, Vascular/cytology , Endothelium, Vascular/metabolism , Endothelium, Vascular/virology , HEK293 Cells , Humans , Protein Binding
10.
Gülhane Tip Dergisi ; 63(4):232-237, 2021.
Article in Turkish | ProQuest Central | ID: covidwho-1615862

ABSTRACT

Vimentin is an intermediate filament protein responsible for maintaining cellular integrity and resistance to stress. It has a widespread distribution in many cells throughout the body where it forms a cytoskeletal framework. Vimentin plays an important role in the regulation of many cellular and tissue functions. It is overexpressed in malignancies, potentially malignant oral disorders and autoimmune conditions like rheumatoid arthritis and Crohn’s disease. It is associated with cell surface binding and replication of viruses such as human immunodeficiency virus (HIV), severe acute respiratory syndrome-related Coronavirus, dengue and encephalitis. In HIV, it is associated with the viral infectivity factor which is associated with HIV replication. It can be used as a biomarker for diagnosis and prognosis and has potential as a therapeutic target in many conditions. The present review focuses on the structure, functions, clinical implications and future scope of vimentin in the management of various diseases.

11.
Small ; 18(6): e2105640, 2022 02.
Article in English | MEDLINE | ID: covidwho-1556161

ABSTRACT

Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. The primary receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2), yet new studies reveal the importance of additional extracellular co-receptors that mediate binding and host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Biophysical and cell infection studies are done to determine whether vimentin might bind SARS-CoV-2 and facilitate its uptake. Dynamic light scattering shows that vimentin binds to pseudovirus coated with the SARS-CoV-2 spike protein, and antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. The results are consistent with a model in which extracellular vimentin acts as a co-receptor for SARS-CoV-2 spike protein with a binding affinity less than that of the spike protein with ACE2. Extracellular vimentin may thus serve as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry, and vimentin-targeting agents may yield new therapeutic strategies for preventing and slowing SARS-CoV-2 infection.


Subject(s)
Protein Binding , SARS-CoV-2 , Vimentin , Antibodies/pharmacology , COVID-19 , Humans , Spike Glycoprotein, Coronavirus , Vimentin/antagonists & inhibitors , Vimentin/metabolism
12.
mBio ; 12(5): e0254221, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1462902

ABSTRACT

Damage in COVID-19 results from both the SARS-CoV-2 virus and its triggered overactive host immune responses. Therapeutic agents that focus solely on reducing viral load or hyperinflammation fail to provide satisfying outcomes in all cases. Although viral and cellular factors have been extensively profiled to identify potential anti-COVID-19 targets, new drugs with significant efficacy remain to be developed. Here, we report the potent preclinical efficacy of ALD-R491, a vimentin-targeting small molecule compound, in treating COVID-19 through its host-directed antiviral and anti-inflammatory actions. We found that by altering the physical properties of vimentin filaments, ALD-491 affected general cellular processes as well as specific cellular functions relevant to SARS-CoV-2 infection. Specifically, ALD-R491 reduced endocytosis, endosomal trafficking, and exosomal release, thus impeding the entry and egress of the virus; increased the microcidal capacity of macrophages, thus facilitating the pathogen clearance; and enhanced the activity of regulatory T cells, therefore suppressing the overactive immune responses. In cultured cells, ALD-R491 potently inhibited the SARS-CoV-2 spike protein and human ACE2-mediated pseudoviral infection. In aged mice with ongoing, productive SARS-CoV-2 infection, ALD-R491 reduced disease symptoms as well as lung damage. In rats, ALD-R491 also reduced bleomycin-induced lung injury and fibrosis. Our results indicate a unique mechanism and significant therapeutic potential for ALD-R491 against COVID-19. We anticipate that ALD-R491, an oral, fast-acting, and non-cytotoxic agent targeting the cellular protein with multipart actions, will be convenient, safe, and broadly effective, regardless of viral mutations, for patients with early- or late-stage disease, post-COVID-19 complications, and other related diseases. IMPORTANCE With the Delta variant currently fueling a resurgence of new infections in the fully vaccinated population, developing an effective therapeutic drug is especially critical and urgent in fighting COVID-19. In contrast to the many efforts to repurpose existing drugs or address only one aspect of COVID-19, we are developing a novel agent with first-in-class mechanisms of action that address both the viral infection and the overactive immune system in the pathogenesis of the disease. Unlike virus-directed therapeutics that may lose efficacy due to viral mutations, and immunosuppressants that require ideal timing to be effective, this agent, with its unique host-directed antiviral and anti-inflammatory actions, can work against all variants of the virus, be effective during all stages of the disease, and even resolve post-disease damage and complications. Further development of the compound will provide an important tool in the fight against COVID-19 and its complications, as well as future outbreaks of new viruses.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/metabolism , Organic Chemicals/therapeutic use , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Animals , Endocytosis/drug effects , Endosomes/drug effects , Endosomes/metabolism , Exosomes/drug effects , Exosomes/metabolism , HEK293 Cells , Humans , Mice , RAW 264.7 Cells
13.
Int J Mol Sci ; 22(14)2021 Jul 12.
Article in English | MEDLINE | ID: covidwho-1308363

ABSTRACT

The cytoskeletal protein vimentin is secreted under various physiological conditions. Extracellular vimentin exists primarily in two forms: attached to the outer cell surface and secreted into the extracellular space. While surface vimentin is involved in processes such as viral infections and cancer progression, secreted vimentin modulates inflammation through reduction of neutrophil infiltration, promotes bacterial elimination in activated macrophages, and supports axonal growth in astrocytes through activation of the IGF-1 receptor. This receptor is overexpressed in cancer cells, and its activation pathway has significant roles in general cellular functions. In this study, we investigated the functional role of extracellular vimentin in non-tumorigenic (MCF-10a) and cancer (MCF-7) cells through the evaluation of its effects on cell migration, proliferation, adhesion, and monolayer permeability. Upon treatment with extracellular recombinant vimentin, MCF-7 cells showed increased migration, proliferation, and adhesion, compared to MCF-10a cells. Further, MCF-7 monolayers showed reduced permeability, compared to MCF-10a monolayers. It has been shown that the receptor binding domain of SARS-CoV-2 spike protein can alter blood-brain barrier integrity. Surface vimentin also acts as a co-receptor between the SARS-CoV-2 spike protein and the cell-surface angiotensin-converting enzyme 2 receptor. Therefore, we also investigated the permeability of MCF-10a and MCF-7 monolayers upon treatment with extracellular recombinant vimentin, and its modulation of the SARS-CoV-2 receptor binding domain. These findings show that binding of extracellular recombinant vimentin to the cell surface enhances the permeability of both MCF-10a and MCF-7 monolayers. However, with SARS-CoV-2 receptor binding domain addition, this effect is lost with MCF-7 monolayers, as the extracellular vimentin binds directly to the viral domain. This defines an influence of extracellular vimentin in SARS-CoV-2 infections.


Subject(s)
Breast Neoplasms/pathology , Breast/pathology , Cell Membrane Permeability , Extracellular Matrix/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Vimentin/metabolism , Breast/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cells, Cultured , Female , Humans , Protein Domains , Spike Glycoprotein, Coronavirus/genetics , Vimentin/genetics
14.
Bioessays ; 42(11): e2000078, 2020 11.
Article in English | MEDLINE | ID: covidwho-746167

ABSTRACT

Intermediate filaments (IFs) formed by vimentin are less understood than their cytoskeletal partners, microtubules and F-actin, but the unique physical properties of IFs, especially their resistance to large deformations, initially suggest a mechanical function. Indeed, vimentin IFs help regulate cell mechanics and contractility, and in crowded 3D environments they protect the nucleus during cell migration. Recently, a multitude of studies, often using genetic or proteomic screenings show that vimentin has many non-mechanical functions within and outside of cells. These include signaling roles in wound healing, lipogenesis, sterol processing, and various functions related to extracellular and cell surface vimentin. Extracellular vimentin is implicated in marking circulating tumor cells, promoting neural repair, and mediating the invasion of host cells by viruses, including SARS-CoV, or bacteria such as Listeria and Streptococcus. These findings underscore the fundamental role of vimentin in not only cell mechanics but also a range of physiological functions. Also see the video abstract here https://youtu.be/YPfoddqvz-g.


Subject(s)
Intermediate Filaments/physiology , Mechanotransduction, Cellular/physiology , Vimentin/physiology , Animals , Bacterial Physiological Phenomena , Host-Pathogen Interactions/physiology , Humans , Intermediate Filaments/chemistry , Mechanical Phenomena , Severe acute respiratory syndrome-related coronavirus/physiology , Vimentin/chemistry , Virus Internalization
15.
Int J Mol Sci ; 21(13)2020 Jun 30.
Article in English | MEDLINE | ID: covidwho-635823

ABSTRACT

Vimentin is an intermediate filament protein that plays key roles in integration of cytoskeletal functions, and therefore in basic cellular processes such as cell division and migration. Consequently, vimentin has complex implications in pathophysiology. Vimentin is required for a proper immune response, but it can also act as an autoantigen in autoimmune diseases or as a damage signal. Although vimentin is a predominantly cytoplasmic protein, it can also appear at extracellular locations, either in a secreted form or at the surface of numerous cell types, often in relation to cell activation, inflammation, injury or senescence. Cell surface targeting of vimentin appears to associate with the occurrence of certain posttranslational modifications, such as phosphorylation and/or oxidative damage. At the cell surface, vimentin can act as a receptor for bacterial and viral pathogens. Indeed, vimentin has been shown to play important roles in virus attachment and entry of severe acute respiratory syndrome-related coronavirus (SARS-CoV), dengue and encephalitis viruses, among others. Moreover, the presence of vimentin in specific virus-targeted cells and its induction by proinflammatory cytokines and tissue damage contribute to its implication in viral infection. Here, we recapitulate some of the pathophysiological implications of vimentin, including the involvement of cell surface vimentin in interaction with pathogens, with a special focus on its role as a cellular receptor or co-receptor for viruses. In addition, we provide a perspective on approaches to target vimentin, including antibodies or chemical agents that could modulate these interactions to potentially interfere with viral pathogenesis, which could be useful when multi-target antiviral strategies are needed.


Subject(s)
Severe acute respiratory syndrome-related coronavirus/physiology , Vimentin/metabolism , Virus Diseases/pathology , Antibodies/immunology , Antibodies/metabolism , Antibodies/therapeutic use , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/drug therapy , Host-Pathogen Interactions , Humans , Pandemics , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Small Molecule Libraries/chemistry , Small Molecule Libraries/pharmacology , Small Molecule Libraries/therapeutic use , Vimentin/chemistry , Vimentin/immunology , Virus Diseases/drug therapy , Virus Diseases/metabolism , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL